Mixture Block Methods for Non Parametric Bayesian Models with Applications

نویسنده

  • Ian Porteous
چکیده

OF THE DISSERTATION Mixture Block Methods for Non Parametric Bayesian Models with Applications By Ian Porteous Doctor of Philosophy in Computer Science University of California, Irvine, 2010 Professor Max Welling, Chair This study brings together Bayesian networks, topic models, hierarchical Bayes modeling and nonparametric Bayesian methods to build a framework for efficiently designing and implementing a family of (non)parametric Bayesian mixture models. Bayesian mixture models, including Bayesian topic models, have shown themselves to be a useful tool for modeling and discovering latent structure in a number of domains. We introduce a modeling framework, networks of mixture blocks, that brings together these developments in a way that facilitates the definition and implementation of complex (non)parametric Bayesian networks for data with partitioned structure. Networks of mixture blocks can be viewed as Bayesian networks that have been factored into a network of sub-models, mixture blocks, which are conditionally independent of each other given the introduction of auxiliary partition variables. We use this framework to develop several novel nonparametric Bayesian models for collaborative filtering and text modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Networks of Mixture Blocks for Non Parametric Bayesian Models with Applications

OF THE DISSERTATION Networks of Mixture Blocks for Non Parametric Bayesian Models with Applications By Ian Porteous Doctor of Philosophy in Information and Computer Science University of California, Irvine, 2010 Professor Max Welling, Chair This study brings together Bayesian networks, topic models, hierarchical Bayes modeling and nonparametric Bayesian methods to build a framework for efficien...

متن کامل

Advanced mixtures for complex high dimensional data: from model-based to Bayesian non-parametric inference

Cluster analysis of complex data is an essential task in statistics and machine learning. One of the most popular approaches in cluster analysis is the one based on mixture models. It includes mixture-model based clustering to partition individuals or possibly variables into groups, block mixture-model based clustering to simultaneously associate individuals and variables to clusters, that is c...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Online Inference in Bayesian Non-Parametric Mixture Models under Small Variance Asymptotics

Adapting statistical learning models online with large scale streaming data is a challenging problem. Bayesian non-parametric mixture models provide flexibility in model selection, however, their widespread use is limited by the computational overhead of existing sampling-based and variational techniques for inference. This paper analyses the online inference problem in Bayesian non-parametricm...

متن کامل

Bayesian non-parametric hidden Markov models with applications in genomics

We propose a flexible non-parametric specification of the emission distribution in hidden Markov models and we introduce a novel methodology for carrying out the computations. Whereas current approaches use a finite mixture model, we argue in favour of an infinite mixture model given by a mixture of Dirichlet processes.The computational framework is based on auxiliary variable representations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010